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SUMMARY

Members of the SH2 domain family modulate signal
transduction by binding to short peptides containing
phosphorylated tyrosines. Each domain displays
a distinct preference for the sequence context of
the phosphorylated residue. We have developed
a high-density peptide chip technology that allows
for probing of the affinity of most SH2 domains for
a large fraction of the entire complement of tyrosine
phosphopeptides in the human proteome. Using
this technique, we have experimentally identified
thousands of putative SH2-peptide interactions for
more than 70 different SH2 domains. By integrating
this rich data set with orthogonal context-specific
information, we have assembled an SH2-mediated
probabilistic interaction network, which we make
available as a community resource in the PepspotDB
database. A predicted dynamic interaction between
the SH2 domains of the tyrosine phosphatase SHP2
and the phosphorylated tyrosine in the extracellular
signal-regulated kinase activation loopwas validated
by experiments in living cells.

INTRODUCTION

Posttranslational modifications (PTMs) and modular protein

domains underlie dynamic protein interaction networks and

represent one of the key organizing principles in cellular

systems (Pawson, 2004). In particular, kinases modulate cell

response to growth signals by adding phosphate groups to

short linear sequence motifs in their substrates. These phos-
phorylated residues in turn serve as docking sites for proteins

containing phospho-binding modules such as the SH2, PTB,

and BRCT domains (Yaffe, 2002). The SH2 domain family

includes a total of 120 domains in 110 proteins and, as such,

represents the largest class of tyrosine phosphopeptide recog-

nition domains (Liu et al., 2006). The peptide recognition prefer-

ence of each member of this large domain family has been the

subject of a number of studies with genome-wide perspectives.

The pioneering work of Cantley’s group exploited oriented

peptide libraries to characterize the preference for specific resi-

dues in the positions flanking the phosphorylated tyrosine in the

targets of 14 SH2 domains (Songyang et al., 1993). Machida

and collaborators used a far-western approach and a new

strategy termed ‘‘reverse-phase protein array’’ to profile nearly

the full complement of the SH2 domain family (Machida et al.,

2007). This strategy allowed for the classification of SH2

domains according to their ability to bind classes of phosphor-

ylated proteins, but lacked sufficient resolution to precisely

define recognition specificity and to permit the identification

of the targets of each SH2-containing protein. Another

approach exploited OPAL, a variant of the oriented peptide

library approach, to derive position-specific scoring matrices

for 76 of the 120 human SH2 domains (Huang et al., 2008).

Finally, the full complement of human SH2 domains was ar-

rayed on glass chips and probed with a collection of phospho-

tyrosine peptides from the ErbB receptor family (Jones et al.,

2006). This latter strategy offers the advantages of directly ad-

dressing the interactions with specific phosphopeptides from

the human proteome and of being amenable to quantitative

analysis. However, the throughput of its present implementa-

tion does not permit screening of the entire human phospho-

proteome. These approaches have represented a considerable

advancement in our understanding of the recognition specificity

within this domain family, and together they have contributed to
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the characterization of approximately two-thirds of the SH2

domains.

We have addressed the problem from a different angle by

developing and exploiting a new technology that permits us to

probe the recognition specificity of each phosphotyrosine

binding domain on a high-density peptide chip containing nearly

the full complement of tyrosine phosphopeptides in the human

proteome. In addition, we integrate these in vitro experimental

data with orthogonal genome-wide data sets to propose an

SH2-mediated probabilistic interaction network that takes into

account both in vitro affinity data and in vivo contextual

evidence. Finally, we have captured from the published literature

more than 800 pieces of experimental evidence pertaining to

SH2 recognition specificity, and we have used this information

as a gold standard to benchmark our predictors.

Our strategy combines harnessing the strengths of a powerful

experimental assay and integrating its quantitative output with

a wide range of orthogonal genome-wide context information.

The raw experimental data and the probabilistic network can

be accessed and explored in the context of the SH2 domain

interaction curated from the literature in a new publicly available

resource, the Pepspot database (PepspotDB; http://mint.bio.

uniroma2.it/PepspotDB/home.seam).

RESULTS AND DISCUSSION

Phosphotyrosine Peptide Chips: A Nearly Complete
Complement of the Human Phosphotyrosine Proteome
The SPOT synthesis approach (Frank, 1992) is based on the

ability to synthesize a few thousand oligopeptides in an ordered

array on a cellulose membrane. This approach has been used

extensively to study protein interactions when one of the part-

ners can be represented as a short unconstrained peptide. For

this project, we have moved forward the approach by increasing

by approximately one order of magnitude the number of

peptides that can be tested in a single experiment (Figure 1).

This is based on the ability to (1) synthesize several thousands

of peptides by spatially addressed SPOT synthesis, (2) punch-

press the peptide spots into wells of microtiter plates, (3) release

peptides from the resulting cellulose discs, and (4) print them

onto aldehyde-modified glass surfaces, which results in high-

density peptide chips displaying the probes in three identical

replicates.

The tyrosine phosphopeptide chip (pTyr-chip) used in this

work was initially designed to represent most of the phospho-

proteome known when this project started. At that time, the

Phospho.ELM (Diella et al., 2008) and PhosphoSite (Hornbeck

et al., 2004) databases contained 2,198 tyrosine phosphopep-

tides. This collection of experimentally determined phospho-

peptides was completed with approximately 4,000 additional

peptides having a high probability of being phosphorylated ac-

cording to the NetPhos predictor (Blom et al., 1999). Overall,

6,202 phosphopeptides, 13 residues long with the tyrosine

phosphopeptide in the middle position, were printed in tripli-

cate with the appropriate controls (Table S1). Each pTyr-chip

can be used to profile the recognition specificity of a phospho-

tyrosine binding domain fused to a tag and revealed with an

anti-tag fluorescent antibody.
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Profiling the Recognition Specificity of the SH2 Domain
Family
The pTyr-chips were used to profile a collection of 99 human

SH2 domains fused to glutathione S-transferase (GST) (Table

S2) (Machida et al., 2007). Experimental reproducibility ranged

from 0.7 to 0.99 Pearson’s correlation coefficient (PCC), with

most results being well over 0.95, when two replica arrays are

compared (intrachip reproducibility), and of approximately 0.95

in two independent experiments carried out with two different

preparations of the same domain (interchip reproducibility) (see

Figure S1; Table S3).

Among the 99 domains in the collection, 26 did not express as

a soluble product and 3 gave a poor signal in the peptide chip

assay. Only experiments with replica arrays having a PCC higher

than 0.7 were considered for further analysis. Overall, 70

domains gave a satisfactory result by this approach. The speci-

ficity of 15 of them had, to our knowledge, never been described

before.

The sequences of the peptides whose binding signal ex-

ceeded the average signal by more than two SDs (Z score > 2)

were aligned and used to draw sequence logos illustrating the

preferred binding motif of each domain (Figure 2).

Differently from what has been recently described for PDZ,

SH3, and WW domains (Gfeller et al., 2011), we could not

find evidence for multiple specificities for any of the character-

ized SH2 domains. The results of the profiling experiments

were used to cluster the domains according to their preference

for phosphotyrosine sequence context (Figure 3A). Based on

the resulting tree, we arbitrarily define 17 specificity classes

characterized by representative amino acid sequence logos

(Figure 3B). In Figure 3C, we have drawn a second tree where

SH2 domains are clustered according to homology in their

primary sequence. Specificity class membership is illustrated

by background colors matching the colors in Figure 3A.

Although closely related domains tend to be members of the

same class, the correlation between sequence homology

over the whole domain and peptide recognition specificity is

overall poor (PCC = 0.30; Figure S2). This is consistent with

the results of Machida and collaborators (Machida et al.,

2007), who failed to identify a correlation between domain

sequence and band patterns in far-western type experiments.

Attempts to identify diagnostic residues that would help assign

uncharacterized domains to specificity classes using MultiHar-

mony software (Brandt et al., 2010) have not been successful.

The finding that little divergence in sequence homology can

account for relatively large changes in binding specificity is

consistent with the reported observations that a few amino

acid changes are sufficient to induce a specificity shift in

peptide recognition modules such as SH2, SH3, and PDZ

(Ernst et al., 2009; Marengere et al., 1994; Panni et al., 2002)

and has implications for the interpretation of the observed

rapid evolution of protein interaction networks (Kiemer and Ce-

sareni, 2007).

Liu and collaborators have proposed that nonpermissive

amino acid residues that oppose binding could play a role

in shaping SH2 domain recognition specificity (Liu et al.,

2010). We have confirmed that some SH2 ligands dislike

specific residues at specific positions (Figure S3). However,
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Figure 1. Schematic Illustration of the Strategy Used to Draw an SH2-Mediated Protein Interaction Network

See also Figure S1 and Table S1.
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our comprehensive analysis failed to confirm that negative

selection could play a prominent role in modulating pep-

tide recognition specificity within the defined specificity

classes.
ANN Predictors of SH2 Binding
The pTyr-chip used in this work was initially designed to contain

most of the human phosphotyrosine peptides that were known

at the start of this project. However, recent developments in
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mass spectrometry-based technology have caused an explo-

sion of information, and the collection of phosphorylated

peptides contained in databases (Diella et al., 2008; Hornbeck

et al., 2004) now significantly exceeds the number of experimen-

tally verified peptides represented in our array. Thus, in order to

be able to offer a resource that could reliably infer the SH2

ligands of any recently discovered phosphopeptide, we devel-

oped artificial neural network (ANN) predictors (NetSH2) for

each of the 70 profiled SH2 domains (see Experimental

Procedures).

To utilize all the information from pTyr-chips, the peptide

sequences and normalized log-ratio intensities were used as

input for the ANN. In this way, we trained the ANNs to predict

if a given peptide is a weak or strong binder of a specific SH2

domain. In total, 70 predictors were trained with an average

PCC of 0.4 (Figure 4). These predictors have been integrated in

the Netphorest community resource (Miller et al., 2008).

Benchmarking the SH2 ANN Predictors
An independent large-scale effort has investigated the substrate

specificities of SH2 domains using oriented peptide libraries

(Huang et al., 2008). The results are available in a resource,

termed SMALI (scoring matrix-assisted ligand identification),

which uses position-specific scoring matrices (PSSMs) to

predict ligands of 76 different SH2 domains. The main difference

between PSSMs and ANNs is that the latter can capture

nonlinear correlations between residues. In order to compare

the performance of SMALI to the ANN developed here, we

compiled an independent benchmark data set of the known

in vivo ligands of SH2 domains. For this purpose, the information

from the MINT database was supplemented with new interac-

tions captured by an extensive search and curation of published

information (see Experimental Procedures). The integrated

interaction list (see Table S4 and Figure S4) was used as the

‘‘positive’’ benchmarking data set, while the ‘‘negative’’ data

set consisted of phosphotyrosine peptides from the Phos-

pho.ELM database (Diella et al., 2008) that had not been shown

to bind any SH2 domain. After discarding benchmark peptides

that were more than 90% identical to the ANN training data

(see Experimental Procedures), we evaluated the performance

of each predictor based on their receiver operating characteristic

(ROC) curves, which show sensitivity as function of false-positive

rate. We summarized each curve in a single number, the area

under the receiver operating characteristic curve (AROC), which

is a convenient performance measure because it does not

depend on defining a threshold to separate positive predictions

from negative ones. Provided that at least eight positive exam-

ples were left, we were able to benchmark 13 ANN and SMALI

predictors with an average AROC of 0.81 and 0.74, respectively

(Figure 4B). Since random performance corresponds to an

AROC of 0.5, both methods perform well in predicting in vivo

ligands of SH2 domains, even though the data used to develop

the methods were based on in vitro screens. However, NetSH2
Figure 2. Sequence Logos Representing the Recognition Specificity o

For each SH2 domain, the peptides whose binding signal was higher than the a

peptides were used to draw the peptide logos by a logo drawing tool implemente

logos of the same specificity class are framed in identical colors. The logo total
has a competitive advantage because it is based on a larger

experimental data set and exploits a higher-order machine

learning, which in part can capture the complexity in the interac-

tion motifs that guide SH2-ligand binding.

Functional Prediction by Integration of Contextual
Information
While the ANN predictors of NetSH2 accurately capture and

model the actual binding site in a narrow sequence window,

they do not take into consideration evidence of the functional

relevance of the inferred SH2-mediated complex in a physiolog-

ical context. Thus, we integrated an additional prediction layer to

accommodate functional information (Linding et al., 2007). To

this end, we developed a ‘‘functional’’ confidence score that

was obtained by integrating, by a naive Bayes approach,

different contextual evidence. The contextual features that

were considered included (1) cellular colocalization, (2) tissue

coexpression, (3) predicted order/disorder, (4) degree of conser-

vation of the sequence of the peptide target in related species,

and (5) graph distance between the supposedly interacting

proteins in the human interactome. All of the considered features

contributed to a different extent to the performance of the

predictor (see Figure S5). The efficiency of the Bayesian predic-

tors, as compared with the ANN predictor, was evaluated by

drawing ROC curves and by calculating the AROC. Although

this analysis is statistically meaningful only for the few SH2

domains for which the ‘‘gold standard’’ of bona fide in vivo inter-

actors is sufficiently large, we can conclude that, in general, the

Bayesian predictor performs better than or equally as well as the

experimental score. The results of this analysis for two different

domains are displayed in Figures 4C and 4D. In the case of

PIK3R1 and GRB2, the Bayesian predictors clearly outperform

the ‘‘experimental’’ predictors (p values of 0.0006 and 0.1,

respectively). Bayesian functional scores were calculated for all

possible SH2 domain-phosphopeptide pairs; a total of 955,010

scores were stored in PepspotDB, along with the information

that was used to calculate the score.

PepspotDB: A Database for the Storage and Analysis of
Experiments based on Peptide Chip Technology
The SH2 interactome project yielded a large number of experi-

mental and computationally derived data points. To cope with

the associated data management challenge and facilitate the

fruition of the data and the integration with published information

in a single integrated resource,wehavedeveloped a newpublicly

accessible database, PepspotDB (http://mint.bio.uniroma2.it/

PepspotDB/home.seam) (see also Figure S6; Table S6).

PepspotDB contains four main data types: (1) raw and pro-

cessed experimental data points; (2) neural network predictions;

(3) literature curated interactions; and (4) Bayesian context

scores. In addition, PepspotDB is tightly integrated with the

protein-protein interaction database MINT (Licata et al., 2012).

All the neural network binding predictions on a set of �13,600
f the SH2 Domain Family

verage signal plus 2 SDs were aligned on the phosphorylated tyrosine. These

d in PepspotDB (see Extended Results in Supplemental Information). Domain

information content is also indicated in each frame. See also Table S2.
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Figure 3. Classification of SH2 Domain Specificity
(A) To draw the recognition specificity tree, we computed the amino acid frequency at each of the13 positions of the SH2 binding peptides to compile a 73 (SH2

domains)3 240 (12 positions3 20 amino acids) matrix describing the domain specificity as amino acid frequencies at each of the 12 positions. We excluded from

the analysis the peptide position corresponding to the invariant phosphotyrosine. This matrix was used as input for EPCLUST (http://www.bioinf.ebc.ee/EP/EP/

EPCLUST/) to cluster the domains by using the algorithm ‘‘linear coefficient based distance, Pearson centered.’’ We next chose an arbitrary branch depth to

identify the 17 specificity classes highlighted with different colors in the figure.

(legend continued on next page)
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Figure 4. Benchmarking NetSH2 Predictors

(A) Distribution of the PCCs of the 70 NetSH2 predictors.

(B) Comparison of the AROC of 13 pairs of predictors tested against a literature-curated data set. Green bars represent the AROC of the SMALI PSSMpredictors,

while yellow bars are the AROC of the NetSH2 predictors presented here. *p < 0.05 (see Experimental Procedures).

(C and D) ROC curve obtained by plotting true positives versus false positives at a varying experimental (blue) or Bayesian (red) score using as a gold standard

a set of experimentally validated interactions extracted from the literature. The number of the gold standard interactions for PI3K and GRB2 were 31 and 24,

respectively.

See also Figure S4 and Table S4.
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phosphopeptides retrieved from the PhosphoSite (Hornbeck

et al., 2004) and Phospho.ELM databases (Diella et al., 2008)

are also stored in the PepspotDB. Among the nearly one million

possible combinations of the 70 SH2-containing proteins and

13,600 phosphorylated tyrosine peptides, some 10,580 interac-

tions are supported by some signal observed in the peptide chip

experiment and 49,175 are computationally predicted by the

neural network algorithm, the overlap being 4,207 interactions.

This latter set of domain-peptide interactions with both experi-

mental and computational support is enriched in interactions

confirmed by published experiments (p value < 1.11$10�16 by

the hypergeometric test) and can thus be deemed high

confidence.

PepspotDB comes with a rich web application providing

a user-friendly interface for easy information retrieval. The infor-
(B) Amino acid logos for one representative domain for each specificity class.

(C) The SH2 domain sequenceswere alignedwith the ClustalW algorithm (4) and th

software/figtree1). Each domain name is highlighted with a background color co

See also Table S3.
mation provided with each retrieved interaction includes exper-

imental, computational and contextual evidence supporting the

interaction, cross-references to MINT records describing an

interaction between the domain-containing protein and the

peptide-containing protein, and links to published articles re-

porting the currently displayed domain-peptide interaction.

Query results can be downloaded in text format for further anal-

ysis. See Extended Results for a more detailed description of the

database and a guide to its use.

Experimental Validation by Phosphopeptide Pull-Down
In order to validate the prediction based on peptide chip exper-

iments, we used 57 synthetic phosphopeptides linked to

magnetic beads to affinity-purify ligand proteins from extracts

of HeLa cells stimulated with epidermal growth factor (EGF).
e homology tree was drawnwith the FigTree program (http://tree.bio.ed.ac.uk/

rresponding to the specificity class in (A).
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Figure 5. Comparison between Experimen-

tally Verified and Predicted Interactions

(A) The graph represents all of the interactions

detected by pull-down experiments. Proteins are

labeled with their gene names. SH2-containing

proteins are represented as yellow circles, while

proteins containing target phosphopeptides are in

green. Proteins containing multiple SH2 target

sites are represented as covalently linked multiple

nodes labeled with the coordinates of the phos-

phorylated tyrosines. Interactions that are also

supported by the neural network predictors (Z

score > 2) are drawn in red.

(B) ROC curve obtained by plotting true positives

and false positives at varying neural network

score. The red curve is obtained by using a ranked

list limited to predictions of interactions with SH2

domains that have been identified in HeLa cells.

See also Figures S4, S5, and Tables S4, S5,

and S6.
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To increase the statistical significance of the analysis, we inte-

grated already published data (25 phosphopeptide baits)

(Schulze et al., 2005) with new experiments (32 phosphopeptide

baits). This bait collection contains a large fraction of peptides

(Table S5) that are phosphorylated on tyrosines upon stimulation

of receptor kinases of the EGF receptor family. Affinity-purified

proteins were identified by liquid chromatography coupled to

high-resolution mass spectrometry. The recovered proteins

mostly contain SH2 domains, with a few exceptions. Overall,

these pull-down experiments define a network of 47 proteins

linked by 85 interactions (Figure 5A). Unlike ‘‘traditional’’ protein

interaction graphs, many proteins in this graph are represented

as covalently linked nodes, where each node is an independent

binding domain (Santonico et al., 2005). This representation is
8 Cell Reports 3, 1–13, April 25, 2013 ª2013 The Authors
made possible by the resolution of the

interaction information obtained by this

approach and allows us to distinguish

whether the interactions engaged by a

highly connected protein are mutually

exclusive or rather involve different bind-

ing regions and are mutually compatible.

Only 45 of the 125 SH2-containing

proteins have ever been identified by

liquid chromatography mass spectrom-

etry (LC-MS) experiments in HeLa cells

(Blagoev et al., 2004; Wi�sniewski et al.,

2009) (Table S6). For 28 of these we had

an SH2 specific neural network predictor

that could be used to rank the SH2

domains according to their preference

for the phosphopeptide baits. Approxi-

mately 33% of the interactions deter-

mined experimentally were ranked high

by the predictors developed in this work,

Z score higher than 2 (red edges in the

graph in Figure 5A). To measure the

performance of our predictors by a more
general approach, we plotted an ROC curve using the experi-

mentally derived SH2 containing proteins as positive instances

and the remaining as negative ones. The AROC was 0.81 with

a precision (true/false positives) of approximately 0.11 at a recall

of 50% (Figure 3B). However, there are a number of reasons why

the performance of our predictors is underestimated by this

analysis. First, some of the interactions that are predicted by

the neural network might have been missed by the affinity purifi-

cation experiment because of the low abundance of the corre-

sponding SH2 protein partners. In addition, some of the proteins

may bind to the bead-linked phosphopeptide by a domain that is

different from SH2. For instance, the protein SHC1 has a second

domain (PTB) that binds phosphopeptides containing theNPxpY

motif. Indeed, more than 50% of the phosphopeptides that



Figure 6. Dynamic EGF Network

(A) The four time-resolved graphs combine the information about (1) the kinetic

of tyrosine peptide phosphorylation following incubationwith EGF (Olsen et al.,

2006), (2) protein-protein interaction data mined from the literature, and (3) the

prediction of SH2 phosphopeptide interactions. Edges representing dynamic

interactions mediated by SH2 domains are in red, while orange and green

circles represent proteins containing or not containing SH2 domains,

respectively.

(B) GST fusions of three different SH2 domains (PI3K, GRB14, and SHP2) were

used in pull-down experiments after incubation of 500 mg of a HeLa cell extract

preincubated for 5 min with EGF. Affinity-purified proteins were analyzed by

SDS-PAGE and, after staining with Coomassie blue, transferred to mem-

branes and revealed with anti-phospho-ERK antibodies.

(C) After 16 hr starvation (time 0), HeLa cells were induced with EGF for 5, 10,

and 30 min. Protein extracts were incubated with the tandem SH2 domains of

SHP2 expressed as a GST-fusion protein. The affinity-purified SH2 ligands

were resolved by SDS-PAGE and revealed with anti-phospho-ERK antibody.

(D) After starvation, HeLa cells were treated with EGF for 5, 10, and 30 min.

Cellular lysates were separated by SDS-PAGE and transferred onto a nitro-

cellulose membrane. The blot was incubated with anti-phospho-ERK and anti-

ERK antibodies.

(E) The whole protein extract (1 mg) of HeLa cells treated with EGF was

immunoprecipitated with anti-SHP2 antibody. Beads were washed with lysis

buffer and the immunoprecipitation (IP) was revealed with anti-phospho-ERK

and anti-SHP2 antibodies.

(F) HeLa cells were starved (00 min) or induced for 5, 10, and 30 min with EGF.

After cell lysis, 1 mg of protein extract was immunoprecipitated with anti-ERK

antibody and protein complexes (IP) were separated by SDS-PAGE and re-

vealed with anti-ERK and anti-SHP2 antibodies.
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affinity purified SHC1 contain this or related motifs. Finally, some

of the interactions detected by pull-down could be indirect. For

instance, SHC1 and GRB2 form a relatively stable complex

upon EGF induction. The SH2 domain of GRB2 binds peptides

containing a typical pYxN motif. The observation that SHC1

was detected in most of the pull-downs obtained with peptides
containing the pYxN GRB2 motif, despite having a different

recognition specificity, suggests that SHC1 binds this phospho-

peptide bead via a GRB2 bridge. Conversely, a SHC1 bridge

could explain the indirect binding of GRB2 to peptides contain-

ing an NPxpY motif. These considerations explain the relatively

poor performance of our SHC1 (and to a lesser extent GRB2)

SH2 domain predictor.

The EGF Dynamic Network
Protein interaction networks are typically pictured as static

graphs lacking a time dimension. However, most biological

processes are dynamic, and protein concentrations and modi-

fications change in time in response to external or internal

molecular cues. For instance, after addition of growth factors

such as EGF, the signal is propagated from the receptor on

the membrane to the nucleus via a cascade of modifications

(mostly additions and removal of phosphate groups), which in

turn promote the association and dissociation of enzymes

and adaptors containing phosphopeptide binding domains.

Olsen and colleagues (Olsen et al., 2006) have reported the

global in vivo phosphorylation dynamics following activation

of the EGF receptor in HeLa cells. Overall, they have identified

6,600 phosphorylation sites on 2,244 proteins containing at

least one phosphorylated Ser, Thr, or Tyr. Of the 293 phospho-

tyrosine peptides identified on 243 proteins, 53 dynamically

change their phosphorylation state after incubation with EGF.

We have combined this dynamic data set with our proteome-

wide prediction of the SH2 target sites to come up with

a description of the dynamic association and dissociation of

proteins following the activation of the tyrosine kinase signaling

cascade.

To this end, we downloaded from the HomoMINT database

(Chatr-Aryamontri et al., 2007; Persico et al., 2005) all of the inter-

actions where one of the partners is a protein participating in the

EGF pathway according to the Reactome database (Vastrik

et al., 2007). Only interactions with a MINT confidence score

(Chatr-Aryamontri et al., 2008) higher than 0.4 were considered.

This network represents the basal static interactions in the cell.

We next downloaded from PepspotDB all the interactions

between SH2-domain-containing proteins and the tyrosine-con-

taining peptides whose phosphorylation varies with time after

EGF stimulation. Interactions with a ‘‘final posterior probability’’

higher than 0.3, according to the Bayesian model developed

here, were taken into consideration. This inferred dynamic

network was superimposed onto the static literature-derived

network. For network legibility, all of the proteins linked to the

network by a single edge were removed. The predicted changes

occurring in the dynamic interactome are illustrated in Figure 6A,

where the proteins containing SH2 domains are in orange and

the interactions mediated by peptides whose phosphorylation

levels change after EGF stimulation are in red. Five minutes after

receptor stimulation, several EGF receptor peptides are phos-

phorylated and act as receptors for SH2-containing proteins.

Many of these interactions are predicted to vanish at time

20min while new ones, mediated by peptides that are phosphor-

ylated late, appear. Some of the inferred interactions, such as the

ones between the receptor and GRB2, SHC1, PLCG, or PI3K,

already have plenty of support in the literature. Some others
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have never been reported and might represent new functionally

important protein links.

We focused on the interactions mediated by the SH2 domains

of the phosphatase SHP2/PTPN11. SHP2 is known to be acti-

vated by binding to phosphorylated GAB1 (Holgado-Madruga

et al., 1996). This interaction releases the autoinhibitory binding

between the N-terminal SH2 domain and the phosphatase

domain, activates the phosphatase enzymatic activity, and, via

an incompletely understood mechanism, promotes a sustained

activation of extracellular signal-regulated kinase (ERK). Our

dynamic network recapitulates the interaction between the

SH2domains of SHP2 andGAB1, but in addition predicts a previ-

ously unrecognized interaction between the SH2 domains of

SHP2 and the phosphorylated Tyr204 in the activation loop of

extracellular signal-regulated kinase 1 or 2 (ERK1/2). The results

of the pull-down and coimmunoprecipitation experiments in

Figure 6B clearly show that SHP2 forms a dynamic complex

with ERK, starting 5 min after incubation with EGF. After

30 min, we observe a sharp decrease in the amount of

immunoprecipitated ERK, which parallels the reduction in ERK

phosphorylation levels.

The validation of the predicted dynamic interaction of SHP2

with ERK1/2 attests that the new experimental data presented

here, combined with orthogonal genome-wide context informa-

tion, contribute useful hints of new interactions to be experimen-

tally tested for functional relevance. The PepspotDB provides

easy access to these data and related predictions and thus

represents a useful resource to shed light on mechanisms that

rely on the formation of complexes mediated by phosphotyro-

sine peptides.

For a further explanation, please see the Extended Results.

EXPERIMENTAL PROCEDURES

Peptide Arrays

The 13-mer phosphotyrosine peptides were selected by combining the

2,198 peptides that were annotated in the Phospho.ELM (Diella et al.,

2008) and PhosphoSite databases (Hornbeck et al., 2004) at the time we

started this project and approximately 4,000 additional peptides from the

human proteome that received a high score by the NetPhos predictor

(Blom et al., 1999). Overall, 6,202 phosphopeptides, 13 residues long,

were synthesized and printed in triplicate identical arrays with appropriate

controls (Table S1).

Amino-oxy-acetylated peptides were synthesized on cellulose membranes

in a parallel manner using SPOT synthesis technology according to Frank

(1992) and Wenschuh et al. (2000). Following side-chain deprotection, the

solid-phase-bound peptides were transferred into 96 well microtiter filtration

plates (Millipore, Bedford, MA, USA) and treated with 200 ml of aqueous trie-

thylamine (2.5% by volume) in order to cleave the peptides from the cellulose

membrane. Peptide-containing triethylamine solution was filtered off and used

for quality control by LC-MS. Subsequently, solvent was removed by evapora-

tion under reduced pressure. Resulting peptide derivatives (50 nmol) were

redissolved in 25 ml of printing solution (70% DMSO, 25% 0.2 M sodium

acetate [pH 4.5], 5% glycerol; by volume) and transferred into 384 well micro-

titer plates. Different printing procedures (noncontact printing versus contact

printing) were tested for production of final peptide chips. The best results

were reached using contact printing with ceramic pin tools (48 in parallel) on

aldehyde-modified slides (enhanced surface; Erie Scientific). Printed peptide

microarrays were kept at room temperature for 5 hr, quenched for 1 hr with

buffered ethanolamine, washed extensively with water followed by ethanol,

and dried using microarray centrifuge. Resulting peptide microarrays were

stored at 4�C.
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Interactions

Since the discovery that SH2 domains mediate binding to peptides containing

phosphorylated tyrosines (Anderson et al., 1990; Moran et al., 1990), several

reports have appeared in the literature describing the sequence of peptide

ligands for several SH2 domains. We have made an effort to recapture this

valuable information, organize it in a computer readable format, and store it

in a database. To this end, we have developed a simple text-mining approach

to recover from the Medline database abstracts containing the text ‘‘SH2’’ and

a ‘‘Y’’ followed by a number in a protein-interaction textual context. The recov-

ered abstracts were examined by expert curators, and whenever the abstract

hinted that the manuscript was reporting evidence for an interaction between

an SH2 domain and a specific phosphorylated peptide, the manuscript was

read through to extract the relevant information. Approximately 50% of the

abstracts recovered by text mining were deemed relevant by the curators.

When this work was in progress, we learned of a similar effort by Gong and

collaborators (Gong et al., 2008). The data curated by this group, including 489

SH2 related articles, are available in a public database. A total of 141 of the arti-

cles in our curation effort were not present in the PepCyber database, while

124 were in common. Among the entries in this latter collection, we found 20

discrepancies in the information extracted by the curators. These entries

were re-examined and the discrepancies fixed. Finally, the PepCyber data-

base contained 365 articles that were not yet curated in our effort. We analyzed

these 365 articles, and for 135 of them we could not find any experimental

evidence supporting an interaction between an SH2 domain and a specific

phosphorylated peptide. The remaining 230 articles were recurated by MINT

curators according to the Proteomics Standards Initiative molecular interac-

tion standards and controlled vocabularies (Hermjakob et al., 2004) (see

vent diagram in Figure S4).

Training and Benchmarking ANNs

In order to build predictors to infer if a given peptide is a weak or a strong ligand

of a particular SH2 domain, we employed ANNs of the standard three-layer

feed-forward type and encoded the amino acids as previously described (Niel-

sen et al., 2003). Only peptides with a length of 13 and with the phosphotyro-

sine residue centrally placed were taken into account. To avoid overfitting, the

data set was homology reduced using CD-HIT (Li and Godzik, 2006) with

default values and 90% sequence identity threshold. These operations

reduced the total data set from 6,202 peptides to 3,896. For each SH2 domain,

we normalized the log-ratio intensity values to range between 0 and 1, where

higher numbers correlate with stronger binding affinity. The data set was

divided into four subsets by random partitioning. We trained an ANN on two

subsets, determined the optimal network architecture and training parameters

on the third subset, and obtained an unbiased performance estimate from the

fourth subset. This was repeated in a round-robin fashion to utilize all data for

training, test, and validation. For each test set, the number of hidden neurons in

the ANN (0, 2, 4, 6, 10, 15, 20, and 30) was optimized according to the PCC.

The reported PCC performance measure of each ANN was based on the inde-

pendent validation subsets.

To validate the performance of developed ANNs, we used the data set of

known in vivo ligands of SH2 domains specifically curated for this work

(referred to the gold standard data set). This training-independent data set

served as the positive instances, while the negatives comprised 1,307 phos-

photyrosine peptides from Phospho.ELM (Diella et al., 2008) that have not

previously been shown to bind any SH2 domains. In order not to validate on

instances that are identical or highly similar in sequence to what was used

to train the ANNs, we used the BLAST algorithm to discard benchmark

peptides that were more than 90% identical to the training set. To compare

the performance of the ANNs with previously published methods, we ran the

benchmark data set through the SMALImethod that employs position-specific

scoring matrices to predict ligands of SH2 domains (Huang et al., 2008). We

tested each predictor on its respective validation set and calculated the

AROC for the SH2 domains for which we had at least eight positive instances

in the benchmark data set. To test if the observed performance of the PSSMs

was significantly different from the ANNs, we constructed bootstrap estimates

of the uncertainty associated with each AROC by resampling the score distri-

butions for positive and negative examples.
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Contextual Score Ranking Interactions according to Likelihood

of Functional Significance

The Bayesian model supporting the contextual score is based on a number of

independent genome-wide features describing the probability that the peptide

is exposed to the solvent or in a disordered part of the parent protein, that the

SH2 domain protein and its predicted partner are expressed in the same

tissues, and that they are close in the protein interaction network and

conserved in evolution. Finally, we have added the neural network score as

a property in the Bayesian inference scheme to give an overall probability of

interaction between the SH2 domain and the protein from which the peptide

in question was derived.

For each set of possible interactors (SH2-domain-containing protein and

peptide-containing protein), we retrieved information that could help deter-

mine whether that particular interaction is likely to take place under physiolog-

ical conditions.

The ‘‘tissue-specific expression’’ data were taken from Su et al. (2004), and

the subcellular localization was extracted partly from CellMINT (G.C., unpub-

lished data) and partly from Gene Ontology annotations. Both of these sets of

data were scored by counting the number of co-occurrences of organelle

terms and dividing by the highest number of occurrences for either the SH2

domain containing protein or the peptide containing protein, thus obtaining

a score between 0 and 1.

‘‘Structural disorder’’ was determined using IUPred by running the predic-

tion method on the full sequences and then cutting out the relevant part (Dos-

ztányi et al., 2005). A score between 0 and 1 was obtained by taking the

average score of all the residues constituting the peptide.

‘‘Degree of conservation’’ of the binding site in related species was evalu-

ated by inspecting it in multiple alignments of orthologs and paralogs from

ENSEMBL (Flicek et al., 2012). The relevant peptides were cut out of the

related sequences and evaluated for binding by the neural networks. The score

contribution for each orthologous sequence with the particular domain was

calculated by multiplying the neural network score with the overall sequence

distance from the original sequence obtained from a neighbor-joining tree.

This procedure was followed to award more to binding-site conservation in

distant sequences than to that in close sequences. The scores obtained

from all the orthologous sequences were added up to produce a single score

for each binding site/SH2 domain combination.

Conservation score = Si dist_sequencei * ANN_sequencei, where i runs

through all orthologous sequences in the alignment for that particular peptide.

Finally, the ‘‘raw neural network scores’’ were incorporated in the Bayesian

framework as a feature on its own.

To assess the importance of contextual evidence, we applied the naive

Bayes algorithm:

PðIjEÞ=PðIÞ � PðE1jIÞ � PðE2jIÞ:::PðExjIÞ
PðE1Þ � PðE2Þ:::PðExÞ

This computes the probability of interaction given the evidence [P(IjE)]. The
components of this calculation are the probabilities of seeing each piece of

evidence given interaction (PExjI) and the probability of seeing this evidence

in the full set of combinations of domain-containing proteins and peptides

P(Ex). In practice, this latter probability is calculated by evaluating both the

probability of the evidence given interaction and the probability of the evidence

given noninteraction (see Figure S5).

The parameters for themodel are determined from a set of known SH2 inter-

actions that was collected and curated manually, deemed ‘‘the foreground

set,’’ as well as the full range of possible combinations of SH2-domain-con-

taining protein and peptides (‘‘the background set’’), assuming that most of

these combinations are noninteracting in vivo.

Assembly of the EGF-Dependent Dynamic Network

The EGF-dependent dynamic network is a graph with a temporal dimension.

This is assembled via the following steps.

We first downloaded from theMINT database all of the interactions involving

as a partner one of the proteins that participate in signal transduction in the

EGF pathway, as described in the Reactome pathway database. Only interac-

tionswith aMINT confidence score greater than 0.4were considered. Next, we

inferred all the possible interactions between SH2-containing proteins and the
peptides described by Olsen et al. (2006) as phosphorylated in tyrosines

following EGF stimulation.

Phosphotyrosine Peptide Pull-Downs and Mass Spectrometric

Analysis

SILAC Cell Culture and Lysis

Adherent human cervix carcinoma cells (HeLa; ATCC number CCL-2) were

SILAC encoded in Dulbecco’s modified Eagle’s medium deficient in arginine

(Arg) and lysine (Lys) and supplemented with 10% dialyzed fetal calf serum

and antibiotics. One cell population was supplied with normal L-Arg and

L-Lys (‘‘light SILAC’’) and the other one with the stable isotope-labeled heavy

analogs 13C615N4-L-arginine and 13C615N2-L-lysine (‘‘heavy SILAC’’). After

five cell doublings, the cells were lysed in an ice-cold buffer consisting of 1%

NP-40, 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1 mM dithiothreitol, protease

inhibitor mixture (Roche complete tablets), and 1 mM sodium ortho-vanadate

as tyrosine phosphatase inhibitor. Following centrifugation at 16,000 3 g for

15 min, the supernatant was used for peptide affinity pull-down experiments.

Peptide Synthesis

Peptides were synthesized as pairs in phosphorylated and nonphosphorylated

forms on a solid-phase peptide synthesizer using an amide resin (Intavis,

Germany) as previously described (Hanke and Mann, 2009). Briefly, an amino

acid sequence stretch of 13 residues surrounding the central in vivo tyrosine

phosphorylation site that we have previously identified by mass spectrometry

(Olsen et al., 2006) was synthesized with an N-terminal SerGly-linker and a N-

amino-modified desthiobiotin moiety for coupling to streptavidin-coated

beads and efficient elution via biotin. The purity of the all synthetic peptides

was confirmed by mass spectrometric analysis.

Peptide Pull-Down

Peptide pull-downs were performed automatically on a TECAN pipetting robot

using the peptide pull-down protocol described previously (Schulze et al.,

2005). The synthetic peptides were bound to streptavidin-coated magnetic

beads (Dynal MyOne, Invitrogen), and cell lysate corresponding to 1 mg of

protein (�5 mg/ml protein) was added to 75 ml of beads containing an esti-

mated amount of 2 nmol of synthetic peptide. Heavy-SILAC-labeled lysate

was incubated with the phosphorylated version of the peptide, whereas

light-SILAC-labeled lysate was added to the nonphosphorylated counterpart.

After rotation at 4�C for 4 hr, the beads were washed three times with lysis

buffer. Beads from each peptide pair were combined and bound proteins

were eluted using 20mMbiotin. Eluted proteinswere then precipitated by add-

ing 5 vol ethanol together with sodium acetate and 20 mg glycoblue (Ambion).

In-Solution Protein Digestion

The precipitated proteins were resuspended in 20 ml of 6 M urea, 2 M thiourea,

and 20 mM Tris-HCl (pH 8.0) and reduced by adding 1 mg of dithiothreitol for

30 min, followed by alkylation of cysteines by incubating with 5 mg iodoaceta-

mide for 20 min. Digestion was started by adding endoproteinase Lys-C

(Wako). After 3 hr, samples were diluted with 4 vol 50 mM NH4HCO3, and

trypsin (Promega) was added for overnight incubation. Proteases were applied

in a ratio of 1:50 to protein material, and all steps were carried out at room

temperature. Digestion was stopped by acidifying with trifluoroacetic acid,

and the samples were loaded onto homemade StageTips packed with

reverse-phase C18 disks (Empore, 3M, MN) for desalting and concentration

prior to LC-MS analysis.

Nanoflow LC-MS/MS

Digested peptide mixtures were separated by online reverse-phase nanoscale

capillary liquid chromatography and analyzed by electrospray tandem mass

spectrometry (MS/MS). Experiments were performed with an Easy-nLC nano-

flow system (Proxeon Biosystems) connected to an LTQ-Orbitrap XL or 7T-

LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Bremen,

Germany) equipped with a nanoelectrospray ion source (Proxeon Biosystems,

Odense, Denmark). Binding and chromatographic separation of the peptides

took place in a 15 cm fused silica emitter (75 mm inner diameter) in-house

packed with reverse-phase ReproSil-Pur C18-AQ 3 mm resin (Dr. Maisch

GmbH, Ammerbuch-Entringen, Germany). The mass spectrometer was oper-

ated in the data-dependent mode to automatically switch between high-reso-

lution orbitrap full scans (R = 60 K at m/z = 400) and LTQ ion trap CID of the top

ten most abundant peptide ions. All full scans were automatically recalibrated

in real time using the lock-mass option.
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Peptide and Protein Identification and Quantification

Peptide and proteins were identified by using Mascot and the MaxQuant soft-

ware suite (Cox and Mann, 2008) and filtered for an estimated false-discovery

rate of less than 1%. All SILAC pairs were quantified by MaxQuant, and the

corresponding protein ratios were calculated from the median of all peptide

ratios and normalized such that the median of all peptide ratios (log trans-

formed) was zero.

For further details, please refer to Extended Experimental Procedures.

ACCESSION NUMBERS

The domain-peptide interaction data have been deposited into a new publicly
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