
Cancer therapy is challenged by the diversity of molecular 
implementations of oncogenic processes and by the resulting 
variation in therapeutic responses. Projects such as The Cancer 
Genome Atlas (TCGA) provide molecular tumor maps in 
unprecedented detail. The interpretation of these maps remains 
a major challenge. Here we distilled thousands of genetic 
and epigenetic features altered in cancers to ~500 selected 
functional events (SFEs). Using this simplified description,  
we derived a hierarchical classification of 3,299 TCGA tumors 
from 12 cancer types. The top classes are dominated by either 
mutations (M class) or copy number changes (C class).  
This distinction is clearest at the extremes of genomic 
instability, indicating the presence of different oncogenic 
processes. The full hierarchy shows functional event patterns 
characteristic of multiple cross-tissue groups of tumors, termed 
oncogenic signature classes. Targetable functional events in 
a tumor class are suggestive of class-specific combination 
therapy. These results may assist in the definition of clinical 
trials to match actionable oncogenic signatures with 
personalized therapies.

In the past decade, advances in high-throughput techniques have 
allowed a systematic and comprehensive exploration of the genetic 
and epigenetic basis of cancer. Genomic studies of multiple tumor 
types have begun to reshape the understanding of cancer genomes 
and their complexity1,2. The TCGA project was started in 2006 with 
the goal of collecting and profiling over 10,000 tumor samples from 
at least 20 tumor types. Half of these studies have been completed  
so far (Table 1). The globally coordinated International Cancer 
Genome Consortium (ICGC), of which TCGA is a member, will 
add thousands more samples and additional tumor types3. This vast  
collection of samples, profiled on multiple technical platforms, is 
yielding data for an increasingly complete atlas of molecular altera-
tions in human cancer.

So far, analyses of genomic alterations in multiple tumor types have 
led to two fundamental observations: (i) tumors originating in the 
same organ or tissue vary substantially in genomic alterations4, and 
(ii) similar patterns of genomic alteration are observed in tumors 

from different tissues of origin5. These phenomena of intracancer 
heterogeneity and cross-cancer similarity represent both a clinical 
challenge and an opportunity to design new therapeutic protocols 
based on the genomic traits of tumors6,7.

The wealth of genomic data available today provides an unprec-
edented opportunity to systematically analyze differences and  
similarities between tumors on the basis of their genetic and epigenetic 
traits. The complex landscapes of somatic modifications observed in 
tumors are typically the result of a relatively small number of func-
tional oncogenic alterations (sometimes called driver events), which 
are outnumbered by non-functional alterations (passenger events) 
that do not substantially contribute to oncogenesis and progression8. 
The low signal to noise ratio (ratio of the number of functional to 
non-functional events) presents a major challenge for data mining 
or data analysis.

Here we developed a novel algorithmic approach that uses a reduced 
set of candidate functional events to hierarchically stratify more than 
3,000 tumors from 12 tumor types. Our approach integrates multiple 
alteration types and is independent of tumor tissue of origin. The 
analysis identifies a striking inverse relationship, averaged over the 12 
tumor types, between the number of recurrent copy number altera-
tions and the number of somatic mutations. This trend subdivides 
tumors into two major classes, one primarily with somatic mutations 
and the other primarily with copy number alterations. Specific pat-
terns of selected events—oncogenic signatures—characterize about 
30 largely tissue-independent subclasses of tumors. These signatures 
are associated with distinct oncogenic pathways and can be used to 
nominate therapeutically actionable targets across tumor types and 
the fraction of patients that may benefit from target-specific agents.

RESULTS
In this study, we integrated genomic data from 12 cancer types from 
TCGA4,5,9–13 with 3,299 tumor samples (Table 1 and Supplementary 
Table 1). Breast, colorectal and endometrioid tumors were sepa-
rated into the molecular subtypes defined in their respective  
TCGA studies4,5,11.

First, we reduced the thousands of genomic and epigenetic changes 
observed in these tumors to a selected list of candidate functional altera-
tions (Fig. 1 and Supplementary Table 2). We integrated copy number 
alterations, somatic mutations from whole-exome sequencing and gene 
DNA methylation events identified in each cancer study. Recurrent 
regions of copy number change (Fig. 1a) were determined using the 
algorithm GISTIC14, and recurrently mutated genes (Fig. 1b) were 
identified using the algorithms MuSiC15 and MutSig16. A selected panel 
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of genes with previous evidence of epigenetic silencing in cancer17 was 
inspected for DNA hypermethylation in our data set (Fig. 1c). To filter 
out events that were likely non-functional, genes with copy number 
alteration and DNA hypermethylation were required to have concord-
ant changes in mRNA expression levels when compared to wild-type 
cases. In total, we selected 479 candidate functional alterations, includ-
ing 116 copy number gains, 151 copy number losses, 199 recurrently 
mutated genes and 13 epigenetically silenced genes. Selected alterations 
were associated with tumor samples in a binary fashion, such that an 
alteration either occurred or did not occur in a given tumor (altera-
tion event). The resulting set of SFEs provides a concise description of 
tumors, with immediate biological and clinical interpretations.

Second, we developed a novel algorithmic approach based on the 
concept of network modularity18 to identify tumor subclasses in our 
data set that are characterized by specific combinations (signatures) of 
SFEs. Our approach provides a hierarchical stratification that allows 
the exploration of tumor subclasses at different levels of granularity.

The cancer genome hyperbola
At the top of this hierarchical classification, we identified two main 
tumor classes of similar size, each characterized by distinct sets of SFEs 
(Fig. 2a). Unexpectedly, although the distinction between copy number 
alterations and mutations was not used as a feature in our classification, 
these characteristic events were predominantly somatic mutations in 
one class and copy number alterations in the other (Fig. 2b). To reflect 
this trend, we named these two classes the M class (primarily with 
mutations) and the C class (primarily with copy number alterations), 
respectively. Notably, TP53 mutations were an exception to this trend, 
as they were strongly enriched in the C class (q = 3 × 10−176), consistent 
with early mutations in TP53 causing copy number genomic instability 
(Supplementary Fig. 1). This division into two main tumor classes 
indicates that recurrent copy number alterations and mutations are 
predominant in different subsets of tumors.

Closer inspection of the distribution of selected functional events 
showed a striking inverse relationship between copy number altera-
tions and somatic mutations at the extremes of genomic instability, 
particularly in highly altered tumors (Fig. 2c). Such tumors had 

either a large number of somatic mutations or a large number of copy 
number alterations, never both. We refer to this trend as the cancer 
genome hyperbola.

Tumors in the C class and M class were positioned along the two 
axes of this hyperbola (Supplementary Fig. 2). Whereas individual 
tumor types (defined by tissue of origin) had varying proportions of 
copy number alterations and mutations (Supplementary Fig. 3), none 
had high numbers of both.

We verified this approximately inverse relationship by adding 907 
tumor samples from 6 additional tumor types to the pan-cancer set 
of 3,299 samples (Supplementary Fig. 4). In this larger data set, we 
also identified two major classes, one primarily dominated by muta-
tions and the other primarily dominated by copy number alterations 
(Supplementary Fig. 4), with a remarkably similar set of character-
istic functional events (Supplementary Fig. 4).

Starting from this first major subdivision, we applied the network 
modularity algorithm recursively to the C class and M class tumors 
and to their subclasses. The result was hierarchical division into sev-
eral levels of subclasses characterized by distinct patterns of functional 
alteration at each level of granularity (Fig. 3, Supplementary Fig. 5 and 
Supplementary Table 3). We found that sample assignment to each 
subclass was robust in that it varied little upon systematic subsampling  
(Supplementary Fig. 6).

This classification highlights distinct mechanisms of oncogenesis 
as determinants of tumor subclasses, unexpected similarities between 
tumors originating in different tissues and new insights into altera-
tions shared by multiple tumor types. Additionally, it provides a 
framework to explore therapeutic protocols on the basis of the genetic 
and epigenetic traits of tumors.

The M class
The M class of tumors included almost all the samples in kidney 
clear-cell carcinoma (KIRC), glioblastoma multiformae (GBM), acute 
myeloid leukemia (LAML), colorectal carcinoma (COADREAD) and 
uterine carcinoma (UCEC), with the exception of the serous-like sub-
type of UCEC. We identified 17 subclasses (M1–M17).

The first partition of the M class contained two main subclasses of 
mixed tumor type, which were characterized by distinct mutational 
events (Fig. 3a, Supplementary Fig. 5 and Supplementary Table 4). 
These subclasses had alterations in distinct oncogenic pathways, with 
alterations of phosphatidylinositol 3-kinase (PI3K)-AKT signaling char-
acterizing the first main subclass (M1–M8) and with APC, TP53 and 
KRAS mutations most prominent in the second subclass (M9–M14).

Within the M class, we discovered recurrently mutated amino 
acids (hotspots) in the chromatin modifiers ARID1A and CTCF 
(Supplementary Fig. 7). ARID1A (Supplementary Fig. 7) is a mem-
ber of the chromatin-remodeling complex SWI/SNF19 and, although 
truncating mutations in this gene have been reported in several tumor 
types20, no recurrent hotspot had previously been identified.

CTCF encodes a chromatin-binding factor that acts as both a 
repressor and an activator of multiple genes, including known onco-
genes and tumor suppressor genes (MYC, PLK, PIM1, CDKN2A and 
IGF2)21. CTCF achieves sequence-selective DNA binding by using 
different combinations of 11 zinc-finger domains (ZF1–ZF11)22. 
Mutations in CTCF were characteristic of subclass M5, which included 
several endometrioid tumors with microsatellite instability (MSI) 
and a small fraction of luminal A breast cancers (Supplementary 
Fig. 7). Mutations of CTCF affecting Arg448 have previously been 
reported22,23 and occurred in multiple endometrioid tumors in  
subclass M5. Here we also identified seven mutations affecting residues 
upstream of ZF5 (Arg377 and Pro378), four mutations affecting ZF2  

Table 1 TCGa pan-cancer data set

Tumor type TCGA ID
Number of 

cases Subtypes

Bladder urothelial carcinoma BLCA 97

Breast invasive carcinoma4 BRCA 488 Basal-like, Her2 enriched, 
luminal B, luminal A

Colon and rectum  
adenocarcinoma11

COADREADa 491 Microsatellite stable 
(MSS), microsatellite  
instability (MSI), 
ultramutators (ultra)

Glioblastoma multiformae9 GBM 218

Head and neck squamous cell 
carcinoma

HNSC 302

Kidney renal clear-cell  
carcinoma

KIRC 420

Acute myeloid leukemia13 LAML 184

Lung adenocarcinoma LUAD 229

Lung squamous cell  
carcinoma12

LUSC 182

Ovarian serous  
cystadenocarcinoma10

OV 446

Uterine corpus endometrioid 
carcinoma5

UCEC 242 Serous-like, endometrioid 
(low CNA), MSI,  
ultramutators (ultra)

aColon and rectum tumors were treated as a single sample set by the TCGA.
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(His312 and Asn314), one of which targets one of the zinc-binding 
 histidine residues (His312), and seven mutations affecting ZF1 
(Gly261, Arg283 and His284), three of which affected the zinc-
 binding histidine residue His284 (Supplementary Fig. 7). Mutations 
observed in luminal A breast tumors specifically targeted ZF1, imply-
ing selective inactivation. We identified three splice-site mutations 
just upstream of exon 4, which encodes ZF1 and ZF2. One of these 
mutations caused an in-frame exon-skipping event (Supplementary 
Figs. 7 and 8). Even though the functional role of impaired CTCF 
activity in tumorigenesis is still unexplored, these mutations indi-
cate that there is selection for specific zinc-finger loss and altered  
DNA-binding specificity that is not tumor type specific but broadly 
defines a subset of breast and endometrioid tumors.

Although most recurrent patterns of alteration characterize tissue-
independent tumor subsets, subclasses M15–M17 were characterized 
by tumor type–specific mutational events (Supplementary Fig. 4); 
for example, EGFR amplification in GBM (M15), NPM1 mutation 
in LAML (M16) and VHL mutation in KIRC (M17). Our approach 
is therefore sensitive for reclassification both within and between  
tumor types.

The C class
The second major class was characterized primarily by TP53 muta-
tions and multiple recurrent chromosomal gains and losses and is 
therefore called the C class. This class included almost all serous 
 ovarian (OV) and breast (BRCA) carcinoma samples, as well as a 
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Figure 1 From global profiles of genomic alterations to selected functional events. (a–c) Genomic alterations considered included copy number 
alterations (a), somatic mutations (b) and changes in DNA methylation (c). For the discovery of oncogenic signatures, we first reduced thousands of 
genomic alterations (heatmaps to the left) to a few hundred candidate functional events (heatmaps to the right). Copy number alterations (losses in 
blue, gains in red), somatic mutations (mutations in green) and DNA methylation status (high level of methylation in black) define the genetic and 
epigenetic landscapes of 3,299 samples from 12 tumors types (arranged from left to right with groups of columns labeled by tumor type). Altered 
genes are arranged vertically and sorted by genomic locus, with chromosome 1 at the top of each rectangular panel and chromosome 22 at the bottom. 
Candidate functional alterations were selected (Online Methods) for each data type (pie charts show the proportion selected). The most recurrent 
selected alterations (histograms) tend to involve well-known oncogenes and tumor suppressors. Tumor types abbreviated as in Table 1.
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large fraction of lung (LUSC) and head and neck (HNSC) squamous 
cell carcinomas and endometrioid tumors of the serous subtype  
(UCEC-serous).

Overall hierarchical subdivision of the C class led to a first major 
partition into two groups, primarily determined by the absence 
(subclasses C1–C6) or presence (subclasses C7–C14) of gains 
and losses on chromosome 8 (Fig. 3, Supplementary Fig. 4 and  
Supplementary Table 5).

Subclasses C3 and C4, which included a large fraction of LUSC and 
HNSC tumors, provided an interesting example of cross-cancer simi-
larity, in which genomic alterations are shared by subsets of tumors of 
different origin. Subclass C3 was characterized by mutation of TP53 
(92%), amplification of 3q26 (64%) and deletion of CDKN2A (32%); 
in contrast, subclass C4 had recurrent focal amplification of 11q13 
(82%) where CCND1 is located. Some of these genomic differences 
actually converged on the same pathway, as loss of CDKN2A (C3) and 
gain of CCND1 (C4) both impair Rb-mediated cell cycle control.

Amplification of the 3q26 locus spans multiple genes, including 
PIK3CA and TERC. To identify candidate functional targets of this 
copy number alteration, we analyzed the mRNA levels of all genes 
in the 3q26 peak in amplified and diploid samples across all tumor 
types. Combined differential expression analysis identified ZNF639 
as the most upregulated gene in the region (Supplementary Fig. 9).  
The zinc-finger protein ZNF639, also known as ZASC1 (zinc- 
finger protein amplified in squamous cancer 1), has previously been 
associated with the pathogenesis of oral and esophageal squamous 
cell carcinomas24,25. PIK3CA was also found to be upregulated when 
amplified, whereas no correlation between mRNA levels and copy 
number was found for TERC.

The second major set of subclasses, C7–C14, had the highest degree 
of copy number alteration and was strongly characterized by recur-
rent gains and losses on chromosome 8, including amplification of 
8q24 where the MYC oncogene is located. Amplification of MYC 
and somatic mutations in TP53 were the most frequent events in 
this subclass.

Cell cycle regulation and the DNA damage response were additional 
pathways affected by copy number alterations in subclasses C7–C14. 
The G1/S checkpoint was compromised by CCNE1 amplification in 
subclasses C7 and C11 and was bypassed by E2F3 amplification in 

subclass C13. Subclass C13 also appeared to have defective cell cycle 
arrest in response to DNA damage owing to inactivation of BRCA1 
and BRCA2, which is recurrent in basal breast and ovarian tumors4,10. 
Finally, subclass C14 had recurrent amplification and overexpres-
sion of the regulator of mitosis AURKA (encoding Aurora kinase A). 
Notably, these alterations were not specific for a single tumor type 
but rather characterized distinct subsets of tumors across multiple 
cancer types.

In summary, we found inactivation of TP53, MYC-driven pro-
liferation and dysregulated cell cycle checkpoints as the hallmarks 
of the C class of tumors, which is dominated by recurrent copy  
number changes (Supplementary Table 6).

From oncogenesis to therapy
Specific combinations of functional events observed in particular sets 
of tumors, even when they were derived from different tissues, point 
to distinct mechanisms of oncogenesis. However, the clinical impact 
of these signatures depends on the ability to selectively block the 
oncogenic action of these molecular alterations.

To explore the relationship between functional alterations and 
therapeutic interventions in more detail, we first assessed the dis-
tribution of potentially actionable alterations in different tissue-
specific tumor types, focusing on a subset of the ~500 SFEs with 
well-characterized roles in pathways (Fig. 4). As is well known, such 
alterations are typically not exclusive to one tumor type, nor are 
they, with few exceptions, present in 100% of samples in a particular  
tumor type.

Instead, a substantial number of targetable alterations were present 
in different tumor types. Examples included hotspot mutations and 
copy number amplifications of PIK3CA (Fig. 4 and Supplementary 
Fig. 10), directly targetable by specific inhibitors26, and of CCND1 
(Fig. 4 and Supplementary Fig. 10), indirectly targetable by selec-
tive inhibition of its regulating protein kinases CDK4 and CDK6  
(refs. 27,28) (Supplementary Table 7). The observed cross-cancer 
distribution of targetable alterations presents an opportunity to design 
tumor treatment strategies tailored to subsets of tumors characterized 
by particular sets of functional events.

The systematic identification of genomic subclasses presented here 
is intended as a step toward this goal across a larger number of tumor 

a b c
100

100

50

50

0

0

C
as

es
 (

%
)

C
as

es
 (

%
)

Tumor types

C class
O

V
B

R
C

A
LU

S
C

H
N

S
C

B
LC

A

M class

K
IR

C

G
B

M

U
C

E
C

LU
A

DLA
M

L

C
O

A
D

R
E

A
D

100

50

0

50

100

E
nr

ic
hm

en
t (

–l
og

(q
))

APC mut
KRAS mut

MGMT meth

MLH1 meth

CDKN2A del

Alterations
enriched in

M class

Alterations
enriched in

C class

TP53 mut
(q = 3 × 10–176)

MYC amp
3q amp

High-level amplification
Homozygous deletion

Mutation
Hypermethylation

High levels of
mutations

High levels
of CNAs

Number of
samples

0 243

Intermediate
level of both

R
ec

ur
re

nt
 m

ut
at

io
ns

40

30

20

10

0
0 10 20 30 40

Recurrent copy number alterations

All
tumors

BRCA1 meth
BRCA1/BRCA2 mut

Figure 2 The first partition of the pan-cancer data set identifies two main classes primarily characterized by either recurrent mutations (M class) or 
recurrent copy number alterations (C class). (a) Each class is composed of multiple tumor types in different proportions. (b) SFEs were tested for 
significant enrichment (more frequent than expected in a random distribution) in each class (events along the x axis, log-scaled q values on the y axis). 
Highly enriched events are primarily mutations in the M class and copy number alterations in the C class. Mut, mutation; meth, methylation change; 
amp, amplification; del, deletion. (c) The distribution of SFEs in tumors indicates that the number of copy number alterations in a sample (x axis) is 
approximately anticorrelated with the number of somatic mutations in a sample (y axis). The number of samples for a given (x,y) position range from  
0 (white) to 243 (dark blue). CNAs, copy number alterations. Tumor types abbreviated as in Table 1.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature GeNetics VOLUME 45 | NUMBER 10 | OctOBER 2013 1131

a n a ly s i s

types than was previously possible. With more than 3,000 tumors 
analyzed, genomic subclasses were found to be characterized not only 
by single oncogenic events but also by specific combinations of events 
(Fig. 5 and Supplementary Fig. 11). Such concurrent alterations may 
be targetable by combination therapies (Fig. 5). For example, subsets 

of lung and head and neck squamous cell carcinomas may benefit from 
concurrent blockade of the cell cycle and PI3K-AKT signaling (Fig. 5, 
subclasses C3 and C4), whereas inhibition of PARP and Aurora kinase 
A may be beneficial for subsets of BRCA1- or BRCA2-mutant ovarian 
and basal breast tumors (Fig. 5, subclasses C13 and C14).
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Figure 3 Characteristic patterns of functional alterations and distinct oncogenic processes as determinants of oncogenic signature classes (OSCs).  
(a) The first partition of the tree-like stratification (starting with ‘all tumors’ on the left) identifies two main classes: the M class (green) and the C class 
(red). We identify 17 oncogenic signature subclasses for the M class (M1–M17) and 14 oncogenic signature subclasses for the C class (C1–C14)  
(one row per subclass). (b) Each subclass includes subsets of tumors from several cancer types (grayscale heatmap; gray intensity represents the 
fraction of samples in a particular tumor type (column) and a particular subclass (row)). (c) Tree classification is determined at each level by sets 
of characteristic functional events (color intensity represents the fraction of samples in a subclass (row) affected by a particular functional event 
(column)). For functional copy number alterations, we indicate, if present, known oncogenes and tumor suppressors in parentheses, for example,  
8q24 (MYC). (d,e) Subclass characteristic events reflect particular cellular processes (color intensity represents the fraction of samples in a  
subclass (row) affected by alterations to a particular process (column)) (d) and altered pathways involved in each of the processes (e). RTK, receptor 
tyrosine kinase; DSB, double-strand break. Tumor types abbreviated as in Table 1.
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A systematic stratification of tumors on the 
basis of therapeutically actionable alterations 
may therefore serve as a point of departure 
for designing ‘basket’ trials in which action-
able oncogenic signatures are matched with 
targeted combination therapy for patients 
with diverse tumor types. The further accu-
mulation of cancer genomics data sets as well 
as cancer genomics profiling in ongoing clini-
cal trials, for example, as promoted in Stand 
Up to Cancer (see URLs) projects, will serve 
to increase the accuracy of matching patients 
with therapies.

DISCUSSION
The wealth of genomic data generated in the 
past decade from analyses of thousands of 
tumor samples has highlighted dramatic het-
erogeneity between and within single tumor 
types. Understanding of this diversity and 
especially of its impact on cancer treatment 
is still limited.

Here we propose a tissue-independent classification of tumors on the 
basis of genetic and epigenetic alterations. Our approach relies on two 
key steps: reducing the complexity of thousands of molecular alterations 
to a few hundred plausibly functional events and stratifying tumors 
on the basis of distinct patterns of these selected genomic features.  

We implemented these approaches in a new method combining bio-
logical knowledge with algorithmic invention and derived a hierarchi-
cal classification of thousands of tumors from 12 tumor types in terms 
of oncogenic signatures. The resulting classification identified unex-
pected relationships between copy number alterations and somatic 
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mutations at the top level of the hierarchy (i.e., the M and C classes).  
More granular patterns of alteration at lower levels of the hierarchy, 
i.e., subclasses of the M and C classes, are characteristic of oncogenic 
signature subclasses and may provide insight into the mechanisms of 
oncogenesis and therapeutically actionable alterations.

The proposed stratification is a useful yet incomplete description 
of human tumors. The current set of results is based on molecular 
profiles from only 12 tumor types, which are represented by sample 
numbers varying from 97 to 488. Of these tumor types, only one 
(LAML) was not a solid cancer; therefore, alterations more frequently 
observed in hematological diseases are likely underrepresented. The 
selection of candidate functional events depends on the quantity and 
quality of the available data. The analysis will benefit from further 
refinement of criteria for the selection of likely functional events, 
especially for non-focal copy number changes. The available data are 
expected to triple in size over the next 2 years as a result of global 
efforts coordinated by the ICGC of which TCGA is a member. This 
increase in available data will allow refinement and expansion of the 
list of selected functional events to more comprehensively account for 
DNA methylation and other alteration types not fully covered in the 
TCGA data sets analyzed here, such as chromosomal translocations 
that create functionally altered fusion genes.

Despite the limitations intrinsic to the current data, this study  
provides a systematic approach for integrating large amounts of  
molecular data in a way that reduces its complexity (noise) and 
increases its biological and clinical interpretability (signal). The  
power of this strategy is likely to improve as it is applied to more 
complete data sets. We believe that an understanding of tumor  
biology in terms of systematically derived signatures of functional 
alterations will provide an informative resource to explore in the 
laboratory and in the clinic, serving the development of personal-
ized cancer therapies.

URLs. Stand Up to Cancer, http://www.standup2cancer.org/; Firehose 
analysis pipeline, http://gdac.broadinstitute.org/; cBioPortal for 
Cancer Genomics, http://cbioportal.org/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. TCGA level 3 data used to generate the event  
calls used in this manuscript and the actual set of event calls  
(both filtered and unfiltered) are available at http://cbio.mskcc.org/
cancergenomics/pancan_tcga/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data. GISTIC14 analysis of copy number data from Affymetrix SNP 6.0 
arrays was obtained for the set of samples in each TCGA study (Table 1), 
as generated with the Firehose analysis pipeline. All GISTIC peaks from 
different studies were taken into account. Overlapping or proximal peaks 
were merged if the number of events called in our data set was concordant 
in over 80% of the cases. Whole-exome sequencing data for each study were 
obtained from the cBioPortal for Cancer Genomics29. Genes identified as 
recurrently mutated by either MuSiC15 or MutSig16 were used in this study. 
DNA methylation data from Illumina Infinium 27K and 450K arrays were 
obtained from the Firehose analysis pipeline. We looked for DNA hyper-
methylation events for a selected panel of genes with previous evidence 
of epigenetic silencing in cancer. For each of these genes, we selected the 
corresponding promoter probes and median centered their values. The 
combination of recurrently mutated genes determined by MuSiC and 
MutSig, GISTIC regions of recurrent copy number gain and loss, and epi-
genetically silenced genes represent the set of selected alterations used in  
this study.

To assign genomic alterations to tumor samples, we used the abstraction 
of binary event calls. A genomic event either occurred (1) or did not occur 
(0) in a given sample. Using this abstraction, somatic mutations of different 
types (missense, truncating, etc.) were treated equally (except for filtered mis-
sense mutations), and multiple mutations targeting the same gene in the same 
sample were treated as one event.

To determine copy number alteration events, we used the set of discrete 
copy number calls provided by GISTIC14: −2, homozygous deletion; −1,  
heterozygous loss; 0, diploid; 1, one copy gain; 2, high-level amplification 
or multiple-copy gain. We considered as altered only samples with either 
homozygous loss (–2) or high-level amplification (2) of genes located in 
regions with recurrent copy number alterations.

DNA methylation levels were measured in terms of β values ranging from 
0 to 1, with 0 corresponding to the minimal level of DNA methylation and 
1 to the maximal level of DNA methylation. DNA hypermethylation events 
were assigned to samples with β values greater than 0.1 and were only used 
if candidate altered samples had concordant downregulation of mRNA levels 
when hypermethylated.

The final selected set of binary calls for genomic alterations provides a 
simple but effective description of the genetic landscape observed in single 
tumors in terms of a few hundred plausibly functional alterations instead of 
thousands of molecular changes. We refer to these called events derived from 
selected functional genomic alterations as SFEs.

Filtered calls. The M class of tumors included several MSI and POLE-mutant 
cases, both of which have been associated with an unexpectedly high mutation 
rate5,11. These types of tumors, therefore, have a large number of mutations 
that are probably not functional. To limit the number of likely non-functional 
events, we restricted our set of mutations in this class to all truncating muta-
tions and to only nonsynonymous, single-residue substitutions that occurred 
at specific residues (hotspots). Hotspot residues were defined as recurrently 
mutated amino acids (represented by at least three mutations) or amino acids 
directly adjacent to a recurrently mutated one.

Similarly, the C class had a large number of copy number events that 
frequently spanned large chromosomal regions. The non-focal nature and 
high numbers of these alterations in the C class are likely to generate false 
positive assignments. To reduce this effect in the C class, assignment of copy 
number events in the GISTIC peaks was conditional on concordant mRNA  
expression changes.

Bipartite network modularity for recurrent genomic alterations. The SFEs 
naturally identify a network of relationships between samples and alterations. 
This network is a binary graph G = [(S,A), E], where nodes are either samples  
(S) or alterations (A) and edges (E) only connect samples to alterations.  
The problem of clustering tumors according to recurrent alterations can there-
fore be formulated as a graph clustering problem.

We addressed this problem using the notion of network modularity, origi-
nally introduced by Girvan and Newman30. Given a partition of a graph G 

into distinct modules—subsets of nodes—the modularity associated with this 
partition is given by

Q e rii i
i

= −∑( )2

where i is a module, eii is the fraction of edges with both ends in i, eij is the frac-
tion of edges with one end in i and the other in j and ri = Σjeij is the expected 
fraction given the degree of the nodes in i.

This concept can be translated from a simple graph to a bipartite network. 
Recall that we defined our graph as composed of two sets of nodes: a set 
of samples S and a set of alterations A. Edges in our graph were defined as  
E = ((s,a) | s ∈ S, a ∈ A). Given a partition of the set of samples S, its modular-
ity is the difference between the number of alterations shared by samples in 
the same module and the expected value of alterations. We defined the degree 
of each alteration a as d(a), equal to the number of samples connected to 
alteration a. Given a module m, dm(a) is the degree of alteration a restricted 
to samples in module m. The eij term of the Girvan-Newman modularity can 
then be formulated as

e
Z

d a d aij i j
a

= ∑1 ( ) ( )

where Z is a normalization factor. As with the Girvan-Newman modularity, 
given a partition of the set of samples S, the modularity measure defined above 
tells us how good this partition is in grouping together samples characterized 
by similar SFEs.

Modularity optimization by greedy partitioning. We adopted a greedy search 
procedure18 to optimize the modularity measure defined for our network of 
samples-to-alterations associations. This procedure starts by assigning each 
node or sample to a separate module and iteratively joining the pair of modules 
that produces the greatest increase in modularity. The approach is therefore 
similar to standard hierarchical agglomerative clustering. Although each step 
requires all (m2) pairs of modules to be scanned, the efficiency of this approach 
is derived from its requirement to compute, for each joined candidate pair, 
only the increase in modularity ∆Q. Note that ∆Q is given by

∆Q e r e e r rt t t t= − = − − −+ +∆ ∆ 1 1
2 2( )

where e and r are intended to represent the corresponding sums over the set 
of modules and t is the iteration step.

In our network, upon joining modules m1 and m2 to form module m,  
we define em and rm as

e d a d a d a e d a d am m m m
aa

m m
a

= = + ⇒ =∑∑ ∑( ) ( ( ) ( )) ( ) ( )2 2
1 2 1 22∆

r r r r r r r r rm m m m m m m m= + ⇒ = − − =1 2 1 2 1 2
2 2 2 2∆

Therefore,

∆Q d a d a r rm m m m
a

= −








∑2 1 2 1 2( ) ( )

The algorithm stops when all nodes are grouped within the same module. 
The optimal partition is selected as the one with the highest modularity value 
among the ones generated through the optimization process. We used this 
optimization strategy to identify the optimal partition of our data set.

Hierarchical stratification of tumors by recursive modularity optimization. 
Community detection by network modularity optimization is limited by the 
size of modules31, and greedy partitioning tends to prefer incremental inclu-
sions of single nodes in big modules rather than growing multiple modules 
simultaneously32. Moreover, the heterogeneous nature of our data set leads 
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modularity optimization to be dominated by major differences between the 
main subclasses. The combination of these factors, although not affecting the 
optimal partition, limits the ability of this approach to capture the submodular 
structure of our data set at different levels of granularity. To address these 
issues, we recursively applied the greedy partition method. The algorithm 
proceeds as follows:

Step 0: Determine the optimal partition P0 of the whole data set.

Step n: Determine the optimal partition Pn
m( ) for each module m 

contained in the partition Pn
m
−1
( *), where m* is the  

supermodule containing m.

At each step, the method subdivides a given module m by determining its 
optimal partition, i.e., the partition with maximal modularity. A module is no 
longer partitioned if (i) the modularity value of its optimal partition is below a 
limiting threshold Qmin and/or (ii) the module contains less than Smin samples. 
For this work, we set Qmin = 0.05 and Smin = 30. At each step, few small modules 
may be generated if the network contains isolated nodes or nodes with very 
few connections. In our data set, a minority of samples had few or no recurrent 
alterations. Small modules (with fewer than Smin samples), including sam-
ples with no or few uncharacteristic alterations, were ignored in the analysis.  
At each step, alterations were selected if they occurred in at least 1% of samples. 
The resulting set of partitions provides a hierarchical tree decomposition of 
the original data set, where the root is the whole set of samples and the leaves 
are modules that could no longer be partitioned.

In the analysis of oncogenic signature classes (OSCs) in Figure 3, we 
selected subclasses respecting conditions (i) and (ii) up to the third step of 
stratification. Exceptions included M1–M3 (fourth step), selected because of 
the marked and biologically relevant differences between these subclasses, 
and M15–M17 (second step), selected because each subclass was dominated 
by samples from a single tumor type.

Validation of the modularity optimization method. We tested our approach 
on two well-characterized data sets frequently used as benchmarks for network 
modularity detection. The first network is known as the Southern Women 
Event Participation network33. It represents women’s attendance of social 
events in the Deep South, using data collected by Davis and colleagues in the 
1930s to study social stratification. For this network, our approach was able 
to identify the two-module structure of the network (Supplementary Fig. 12) 
that coincides with the solution proposed by Guimera and colleagues34 and, 
except for one woman, with the subjective solution proposed by the ethnog-
raphers that conducted the study.

The second test network is derived from data on corporate interlocks in 
Scotland in the twentieth century35. The largest connected component of this 
network is composed of 131 directors and 86 firms. Our approach identi-
fied a nine-module solution with modularity value Q = 0.65 (Supplementary  
Table 8). The same component was analyzed by Barber36 using an approach 
based on the eigenspectrum of the adjacency matrix of the network. In this 
work, the best solution obtained with the standard approach had Q = 0.566. 
A solution with Q = 0.66 was found using a modified version of their method 
that performed a search to optimize the number of modules rather than letting 
this number emerge from the modularity optimization procedure.

Enrichment analysis of genomic alterations. Each node of the tree, except for 
the leaves, represents a partition of a set of samples into separate modules or 
clusters. At each step, we identified the determinants (particular SFEs) of the 
partition by testing for statistically significant enrichment of each SFE in each 
class. For each SFE, we first tested for significant deviation from the expected 
distribution of its occurrences using a χ2 test. Second, we selected the cluster 

with the highest fraction of samples altered by the particular SFE and tested for 
statistical enrichment by Fisher’s exact test. All P values were corrected for the 
false discovery rate (q value). SFEs listed in Figure 3 (middle) were selected as 
the most significantly enriched in each subclass at each branching of the tree 
decomposition (q < 0.001) or as the most frequent in each subclass.

Robustness of the subclasses. The robustness of the subclasses was assessed 
by removal of different percentages of samples and reclassification of the 
reduced data sets. During each run, hierarchical stratification obtained with 
the reduced data set was mapped to the original one by mapping each module 
from the reduced classification to the module from the original classification 
that maximizes the overlap (Jaccard) coefficient (J) associated with the two 
sets37. Given a module m1 and a module m2, the J coefficient of m1 and m2 
is defined as

J( , ) /m m m m m m1 2 1 2 1 2= ∩ ∪

with J = 1 if the two sets are identical and J = 0 if they are completely dis-
joint. Each mapping was scored with the average J obtained by the mapped 
 modules. For each classification derived from a reduced data set, we derived 
a corresponding randomized version with the same hierarchical structure but 
permuted class memberships. Robust solutions were those with high average 
J values, averaged over repeated removal runs.

Reduced data sets were generated randomly by removing 5%, 20% and 
50% of the samples (15 instances for each reduction), with the set with 50% 
fewer samples only used to evaluate the robustness of the M and C classes. 
We evaluated the robustness of subclasses separately at different levels of the 
hierarchical stratification and, for each evaluation, by estimating the expected 
J value using the randomized classifications.

Testing for concordant mRNA and copy number changes. We tested genes 
located in regions of recurrent copy number gain and loss for concordant 
mRNA expression changes for each tumor type separately. For each region, we 
identified the sets of altered samples (+2 or −2) and diploid samples (0) and 
the corresponding distributions of mRNA levels for each gene in the region. 
mRNA levels were assayed by RNA sequencing. Given the non-normal distri-
bution of RNA sequencing read counts, distributions of each gene in the two 
groups (altered and diploid) were compared using the Mann-Whitney test. 
Implementation of the Mann-Whitney test was provided in the Java Statistical 
Classes (JSC) library. Individual q values were then combined using Fisher’s 
method (product of the single-test q values), and genes within the same peak 
were scored using the corresponding combined q values.
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